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ABSTRACT 2D 13C–1H HSQC NMR spectroscopy of acetylated cell walls in solution gives a detailed fingerprint that can be

used to assess the chemical composition of the complete wall without extensive degradation. We demonstrate how

multivariate analysis of such spectra can be used to visualize cell wall changes between sample types as high-resolution

2D NMR loading spectra. Changes in composition and structure for both lignin and polysaccharides can subsequently be

interpreted on a molecular level. The multivariate approach alleviates problems associated with peak picking of overlap-

ping peaks, and it allows the deduction of the relative importance of each peak for sample discrimination. As a first proof

of concept, we compare Populus tension wood to normal wood. All well established differences in cellulose, hemicellulose,

and lignin compositions between these wood types were readily detected, confirming the reliability of the multivariate

approach. In a second example, wood from transgenic Populus modified in their degree of pectin methylesterification was

compared to that of wild-type trees. We show that differences in both lignin and polysaccharide composition that are

difficult to detect with traditional spectral analysis and that could not be a priori predicted were revealed by the multi-

variate approach. 2D NMR of dissolved cell wall samples combined with multivariate analysis constitutes a novel approach

in cell wall analysis and provides a new tool that will benefit cell wall research.
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INTRODUCTION

Plant cell walls provide massive amounts of polysaccharides

and lignin, important for a variety of industrial processes. Re-

search aimed at optimizing cell wall characteristics for end

users by conventional or molecular breeding is highly depen-

dent on reliable methods to determine cell wall chemistry and

composition in novel genotypes. This is a challenging task be-

cause each wall component alone is complex and the native

polymer composition and chemical structure of cell walls re-

main difficult to elucidate (Boerjan et al., 2003; O’sullivan,

1997). Furthermore, the interactions between wall polymers

are only poorly characterized and understood. The most com-

mon approach in secondary cell wall analysis has been to iso-

late and purify specific components, and to characterize them

in detail using a variety of degradative and spectroscopic ana-

lytical tools. Wet chemistry approaches suffer from unavoidable

destruction of molecular structure. Isolations are often accom-

panied by unwanted modifications, and unfortunate partition-

ing due to the incomplete extractability of the component of

interest. Moreover, polymer interactions in the cell wall will re-

main undetected.

Ideally, the chemical structure of the cell wall and its com-

ponents should be resolved in intact samples containing the

native cell wall. Several methods are in place for this purpose,
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such as solid-state NMR, NIR, FT-IR and Raman spectroscopy.

While these methods are rapid (with the exception of solid-state

NMR), they provide limited information on chemical structure,

which make them more useful as tools for broad fingerprinting

or chemical imaging (Gierlinger and Schwanninger, 2006;

Maunu, 2002; Tsuchikawa, 2007). A promising approach to ob-

tain more detailed information on native composition and

chemical structure of cell walls is the dissolution of whole cell

wall samples combined with high-resolution multidimensional

NMR analysis. Dissolution followed by acetylation provides

acetylated cell walls that are soluble in common NMR solvents.

High-resolution 2D 13C–1H correlative NMR methods allowed,

for example, minor lignin components to be examined in the

presence of overwhelming polysaccharides (Lu and Ralph,

2003; Ralph and Lu, 2004). The dissolution solvents used,

N-methylimidazole (NMI) or tetrabutylammonium fluoride in

dimethylsulphoxide (DMSO), appear to be non-destructive as

determined using lignin model substrates (Lu and Ralph,

2003). However, successful dissolution requires extensive cleav-

ing of the polymers into smaller fragments via ball-milling that

unavoidably will introduce some destruction of the native wall

structure. Studies suggest that ball-milling cleaves the weakest

bonds (glycosidic linkages in polysaccharides, b-aryl ethers in lig-

nins), leaving most of the structural features intact (Hu et al.,

2006; Ikeda et al., 2002). A further improvement to cell wall dis-

solution is the use of NMI-d6 that allows direct NMR analysis

of the cell walls without acetylation (Yelle et al., 2008). The

method provides some increase in the dispersion of polysaccha-

ride anomeric peaks and allows the natural acetylation of wall

mannans and xylans to be investigated. Simply swelling cell

walls in DMSO-d6, alone, produces a gel that also allows the

use of solution-state NMR (Kim et al., 2008). The spectra have

lower resolution than for a true solution (due to the viscosity

and other factors), but spectra can be acquired more rapidly

and are surprisingly rich in resolved detail.

A 2D 13C–1H HSQC NMR spectrum of the dissolved wall pro-

vides a wealth of information and represents a high-resolution

compositional and structural ‘fingerprint’ of all wall compo-

nents, where many of the peaks have been assigned to chem-

ical structures (Kim et al., 2008; Lu and Ralph, 2003; Ralph et al.,

1999; Ralph et al., 2005; Yelle et al., 2008). To date, however,

full use of this information has been limited by the extent to

which the spectra can be analyzed. Traditionally, this is done by

peak picking and area measurements of well resolved peaks

from known structures supposed to differ between samples.

This approach is limited by a priori hypotheses about anno-

tated structures, and peak picking of overlapping peaks is no-

toriously difficult. The complete spectral information is thus

not used, and structural differences in the cell wall between

samples might therefore pass undetected. Alternatively, spec-

tra can be analyzed through an unsupervised approach by cre-

ating differential spectra between sample types. Whereas this

approach uses the full spectral information, it does not provide

a comprehensive overview of the sample set that is important,

for example for detection of outliers. Furthermore, the

relative importance of different peaks for sample discrimina-

tion is difficult to assess.

Multivariate data analysis can be used to take full advan-

tage of the information present in 2D NMR spectra of dissolved

cell walls. Principal component analysis (PCA) (Jackson, 1991;

Wold et al., 1987) and orthogonal projections to latent struc-

tures (OPLS) (Trygg and Wold, 2002) have proven to be tremen-

dously useful in the analysis of complex spectral data (Holmes

et al., 2000; Stenlund et al., 2008; Wold et al., 1997). These

methods can be used to build statistical models where all peaks

in the spectra, assigned or not, are considered simultaneously.

PCA is a projection method that gives a comprehensive over-

view of systematic variation within complex data, where clus-

tering of samples with similar features as well as eventual

outliers can be detected. PCA is therefore commonly used as

a first step in multivariate data analysis. OPLS, on the other

hand, is a supervised regression method that relates the vari-

ation within the data to a class identifier, such as a specific ge-

notype. Differences between sample types that are obscured

by systematic biological or experimental variation in a PCA

can thus still be identified using OPLS. When applied to

a two-class problem, this is called OPLS-DA (DA for discrimi-

nant analysis). The use of multivariate analysis of 2D NMR spec-

tra as a global analysis technique to study the chemical

structure and composition of cell walls is thus highly justified.

It allows the visualization of differences between samples as

highly informative 2D loading spectra, as recently demon-

strated in a study of extracted pectin fractions (Hedenström

et al., 2008). These 2D loading spectra can be interpreted in

the same way as the original spectra and thus provide a de-

tailed picture of structural differences in the cell wall between

sample types.

In this paper, we demonstrate the power of combining 2D

NMR spectra from dissolved whole cell wall materials with mul-

tivariate analysis to reveal structural/compositional differences

between wood samples from Populus. In the first case, tension

wood (TW) is compared to normal wood (NW). This provides

an example in which the major compositional differences are

well known (Timell, 1969), and can be considered as a positive

control for the multivariate approach. In the second case, we

compared a transgenic Populus line down-regulated in the ac-

tivity of a pectin methylesterase (PME) with wild-type trees.

This provides an example in which differences in cell wall com-

position are subtle and in which no prior predictions about

modifications to major wall components were possible. In

both cases, multivariate analysis of 2D NMR spectra revealed

differences beyond those readily detected by traditional inter-

pretation of NMR spectra. These two examples demonstrate

that the approach can be used to effectively and reliably reveal

structural/compositional differences in all components of the

plant cell walls induced by environmental or genetic modifica-

tions. An advantage that cannot be overstated is that the

major differences between sample types described by the

multivariate models can be visualized as 2D loading spectra

that allow substantial interpretation of those differences.
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Moreover, the 2D loading spectra can be used to highlight the

peaks with the highest significance for sample type discrimina-

tion. We propose that this technology has the potential of be-

coming an important tool in research aimed at optimizing cell

wall characteristics, through breeding or genetic approaches.

RESULTS AND DISCUSSION

A 2D 13C–1H HSQC NMR spectrum from a dissolved and acet-

ylated cell wall sample from Populus wood consists of a large

number of peaks, originating from correlations between car-

bons and their directly attached protons, where the composi-

tion of both polysaccharides and lignin components are

observable (Figure 1). Many peaks are well resolved but there

are also regions in the spectra where a number of peaks over-

lap (mostly from different polysaccharides). Peak assignment

is, of course, crucial for interpretation of these spectra and,

while the assignment of the different lignin structures has

been verified with model substances, several of the polysac-

charide assignments shown in Figure 1 still remain tentative

and some sugar units, such as rhamnose and fucose, are not

assigned in those spectra. Complete assignment of those cell

wall components requires further studies. 2D 13C–1H HSQC

spectra have previously been used to elucidate lignin structure

in cell walls (Ralph et al., 2006, 2008; Wagner et al., 2007), but,

in this paper, we also demonstrate the potential for a more

comprehensive analysis including all cell wall components.

Comparison of Cell Wall Composition between Populus

Tension Wood and Normal Wood

As a first example to demonstrate the reliability of combining

2D NMR analysis of dissolved cell walls with multivariate

Figure 1. Typical 2D 13C–1H HSQC Spectrum of Dissolved Acetylated Cell Wall from Populus.
1H and 13C chemical shifts are located on the x- and y-axis, respectively. The large number of resolved (and unresolved) peaks reflects the
complexity of chemical structures of the cell wall components. Peak annotations are based on assignment of model substances and liter-
ature values. Acetate peaks that appear at ;2/30 ppm in the 1H/13C dimensions are not shown. The polysaccharide abbreviations refer to
the following residues in their respective polymers: Glc, Glucosyl; Man, mannosyl; Xyl, xylosyl; Ara, arabinosyl; 4-OMe-GlcA, 4-O-methyl
glucuronic acid.
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analysis to detect differences in cell wall composition between

sample types, we compared tension wood (TW) with normal

wood (NW) from aspen (Populus tremula L.) The most promi-

nent feature of TW is the presence of an inner cellulose-rich wall

layer (the so-called G-layer) in the wood fibers, which results in

an increase in wood cellulose and a corresponding decrease in

lignin, xylan, and glucomannan (Timell, 1969). TW lignin is also

known to have an increased syringyl/guaiacyl (S/G) ratio (Pilate

et al., 2004; Yoshida et al., 2002) and small increases in galactan,

arabinogalactan proteins (AGP), and rhamnogalacturonan I

(RG I) (Bowling and Vaughn, 2008; Timell, 1969).

Multivariate data analysis on full-resolution spectra, with-

out the need for peak picking or integration of peak volumes

before analysis, was accomplished according to Hedenström

et al. (2008) (Figure 2). Data pre-treatment (as described in

Methods) effectively removed unwanted peaks, from residual

solvent, or data points containing only noise. After normaliza-

tion to a constant sum and mean centering, the resulting spec-

tral data were subjected to PCA to obtain an overview of the

variation between spectra and hence also the difference in

wood composition between sample types. The fact that a clear

separation between NW and TW samples is seen along the first

principal component (t1) indicates a significant difference in

wood composition between these sample types (Figure 3A).

The majority (94%) of the variation within the data was

explained by the two calculated principal components

(81% in the first and 13% in the second). The loading vector

along the first principal component thus contains spectral in-

formation highly correlated to this sample discrimination and

was subsequently back-transformed to a 2D loading spectrum

(Figure 3D). In this spectrum, the value of each variable (spec-

tral data point) corresponds to its correlation with t1. Positive

peaks are thus correlated with samples with positive score val-

ues along t1 in Figure 3A, namely TW samples. Comparison

with previously made assignments (Figure 1) verified that

peaks positively correlated with the TW samples originated

mainly from cellulose, reflecting the higher cellulose content

in TW. The increase in cellulose was accompanied by a relative

reduction in lignin, xylan, and mannan (from glucomannan).

In addition, a few unassigned peaks were also elevated in ten-

sion wood. These unidentified peaks found to co-vary with cel-

lulose were initially suspected to be remnants from material

not fully acetylated in the sample preparation but this possi-

bility could be ruled out, as they later were found to be unaf-

fected by acetylation conditions. Furthermore, the appearance

of these peaks in cellulose reference spectra implies that they

originate either from cellulose itself or from a hemicellulose

tightly associated with cellulose. Delineating their exact na-

ture will require further investigation.

It can be noted that the NW samples are more tightly clus-

tered along both t1 and t2 than the tension wood samples

(Figure 3A). The loadings p2 (not shown) that describe the spec-

tral variation along t2 indicate that this difference results from

a phasing error associated with the cellulose peaks, which

explains why it is more pronounced in the cellulose-rich TW

samples. The ability to investigate intra- as well as inter-class var-

iation to detect sources of variation induced by, for example,

experimental error is an appealing feature of this multivariate

approach. In principle, variation in any direction in the score

plot can be studied.

Figure 2. Overview of the Procedure for Using Multivariate Analysis on 2D NMR Data.

(A) Each spectrum is converted to a row vector and placed in a new data matrix X. Data points with intensity below a set threshold were
considered noise and removed from the matrix.
(B) Scores and loadings resulting from multivariate analysis of matrix X are analyzed in order to detect latent structures within the data.
(C) The loadings, initially represented as line plots of length K (number of columns in X), are converted to 2D loading spectra by reversing the
unfolding procedure described in (A).
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One benefit of using full-resolution spectra in the analysis as

opposed to peak picking and using a resulting peak list is ap-

parent from the resolution obtained from peaks that overlap

with a number of other peaks in the original spectrum (com-

pare the cellulose G6 peaks in Figures 1 and 3D). This is a result

of the co-varying behavior of all data points belonging to the

same peak. For the cellulose peaks that are responsible for the

variation along t1, their actual 2D-peak shape will be apparent

in the loading spectrum, even though they overlap with other

peaks in the original spectra. This high-resolution information

about peaks in congested regions of the spectra will almost

certainly be lost when performing a peak picking analysis.

Changes in lignin composition could not be deduced di-

rectly from the PCA model using the full spectral range be-

cause of a relative decrease in the total lignin amount.

However, the spectral region containing aromatic peaks can

be modeled separately to detect changes in lignin composition

(S/G-ratio, degree of acylation by p-hydroxybenzoate) without

interference from polysaccharides. In this case, qualitative dif-

ferences between the lignin in TW and NW are visualized, ig-

noring the fact that TW has an overall decrease in lignin. A PCA

model using only this spectral region also discriminated be-

tween TW and NW (Figure 3B). The loading plot shows that

the sample discrimination is a result of the anticipated higher

Figure 3. Comparison between Tension Wood and Normal Wood Using PCA.

(A) The t1–t2 scores scatter plot from the PCA model using the whole spectral region (with the exception of the acetyl resonances) showing
class separation between tension wood and normal wood samples along t1.
(B) The t1–t2 scores scatter plot from the PCA model of the aromatic region of the spectra again showing class separation between tension
wood and normal wood samples. One of the TW samples was considered to be an outlier and was removed from this model.
(C) 2D loading plot p1 explaining the spectral variation along t1 in the PCA model shown in (B). The red and orange resonances correspond-
ing to S and PB lignin units are elevated and the purple resonances from G lignin units are relatively decreased.
(D) Corresponding 2D loading plot from the PCA model shown in (A). Resonances in red and orange correspond to cell wall components
with a relative increase in tension wood compared to normal wood. The resonances in blue and green correspond to components with
a relative decrease in tension wood. G#1a and G#1b refer to the a- and b-conformations of the glucosyl anomeric units at the reducing end of
cellulose.
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relative amounts of S lignin and p-hydroxybenzoates, and rel-

atively decreased G lignin in tension wood (Figure 3C).

Taken together, the results obtained are consistent with

prior knowledge about tension wood chemistry and demon-

strate that PCA can be used to detect and, more importantly,

interpret differences in cell wall structure between two sample

types. In addition, the resulting high-resolution 2D loading

plots revealed details that potentially could be lost using peak

picking approaches.

Comparison of Cell Wall Composition between PME

Down-Regulated and Wild-Type Populus

In a second example, we compared wood from transgenic hy-

brid aspen (Populus tremula x tremuloides) down-regulated in

PME activity (Siedlecka et al., 2008), with wood from wild-type

(WT) trees. The transgenic wood samples in this study were

previously shown to be modified in their degree of pectin

methylation (Siedlecka et al., 2008). Although pectin chemistry

per se is difficult to study in the approach used here because

a major fraction of the pectins will be extracted during cell wall

preparation, a modification in one wall polymer is often ob-

served to affect other components of the wall matrix (Leplé

et al., 2007). We use this example to demonstrate the useful-

ness of combining 2D NMR analysis with multivariate analysis

to detect subtle and unpredictable differences between wood

samples.

Similar to the previous example, a PCA model from pre-

processed 2D 13C–1H HSQC spectra obtained from transgenic

and WT wood samples provided an overview of the variation

within the data. Unlike the previous comparison between TW

and NW, no obvious clustering of sample types was detected

(data not shown). It was therefore concluded that eventual

differences in the spectra induced by the modification of

PME activity are obscured by biological and/or experimental

variation. However, the PCA model was still useful as a quality

control measure of the input data and variations in processing

parameters such as alignment and phase-correction between

spectra could be detected and rectified.

In order to investigate whether there exists any systematic

variation in the spectral data related to the samples being ei-

ther transgenics or WT, we used OPLS-DA. In contrast to PCA,

this supervised multivariate analysis correlates the variation

between spectra with the class identifier (transgenic or WT)

of each spectrum. Differences in the spectra correlated to sam-

ple type can thus be studied even though the differences ac-

count for only a minor part of the total spectral variation

within the dataset. To construct a reliable model, the data

were scaled to unit variance (UV-scaling). This scaling gives

all peaks the same variance, independently of their intensities,

which makes it easier to detect differences in cell wall compo-

nents with low abundance. An additional benefit of this scal-

ing is that the intensities of the peaks in the resulting loading

plots are directly correlated to their importance for sample

type discrimination. The loadings theoretically have values

between 61 (corresponding to perfect negative or positive

correlation). Simply by choosing an appropriate cut-off value,

we can identify peaks with different weights in the model.

Although the peak shapes are distorted by the UV-scaling

(Craig et al., 2006), the 2D loading plots can still be interpreted

based on peak positions (Hedenström et al., 2008).

A two-component OPLS-DA model explained 39% (R2X

0.39) of the spectral variation between WT and transgenic

trees and had a predictive ability (Q2Y) of 0.34 (Figure 4A). This

is not considered to be a strong model, but it still indicates

a clear difference between these two sample types. A random

permutation test was performed to validate the model and

this test confirmed that the model, although rather weak, is

reliable. The loading plots (Figure 4B and 4C) were constructed

from loadings along t1 in the score plot (Figure 4A). Positive

(red) peaks are thus correlated to transgenic trees and the neg-

ative (blue) peaks are correlated to WT trees. It is apparent

from Figure 4B that most of the peaks in the spectra to some

extent contribute to the sample discrimination. To reveal peaks

with the highest correlations to sample discrimination (which

are therefore most important for separating the samples),

a stringent loading cut-off of 0.5 was applied. This results in

a cleaner loading spectrum that facilitates the model interpre-

tation (Figure 4C). Care should be taken, however, when inter-

preting these loadings because some of the ‘peaks’ observed in

Figure 4C were interpreted as artifacts arising from slight

changes in peak positions or line-width for certain peaks be-

tween samples rather than a change in peak intensity. Such

effects are magnified when using UV-scaled data, as the data

points at peak edges have the same variance as all other data

points. This effect is obvious for the xylan C5/H5 peaks located

at 62/3.9 and 62/3.25 ppm (1H/13C chemical shifts) where only

the edges appear to be important, implicating a change in

line-width of these peaks. A closer inspection of the individual

spectra revealed that these peaks are, in fact, slightly broader

for two of the WT samples. Thus, in Figure 4B and 4C, only

peaks centered on a peak in the original spectra have been an-

notated and should be interpreted as increased or decreased

levels for a particular cell wall component in the different

sample types. Although peak shifts can contain relevant infor-

mation about changes in cell wall structure, these effects were

not further analyzed in this study.

Interpretation of the loading plots (Figure 4B and 4C)

revealed that the most prominent differences between sample

types appear to be the peaks representing lignin G and

p-hydroxybenzoate units (Figure 4C), which are negatively cor-

related with the transgenic samples. To confirm the accuracy of

this conclusion, it was verified using derivatization followed by

reductive cleavage (the DFRC method) (Lu and Ralph, 1997)

and pyrolysis-MS (Supplemental Figure 1). Several peaks

originating from different polysaccharides are also seen in

the loading spectrum without cut-off (Figure 4B), but only

few of these remain in the more stringent loading spectrum

(Figure 4C). The cellulose peaks, for example, are prominent

in the loading spectrum when no cut-off is used, but are less

important to explain the model that discriminates the samples
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as they are filtered away when a 0.5 cut-off was used. Interest-

ingly, some of the unassigned peaks that differed between TW

and NW also appear in Figure 4C (marked with dotted lines). It

is important to point out that the multivariate approach used

here with PCA for detection of eventual outliers and quality

control of processing parameters followed by OPLS-DA for

sample discrimination results in a simplified and more reliable

interpretation of the differences between transgenic plants

and WT compared to a traditional difference spectrum (Sup-

plemental Figure 2). This example highlights the usefulness

of combining 2D NMR of dissolved samples with a multivariate

approach to detect, visualize, and interpret subtle differences

in the cell wall chemistry between different sample types.

Concluding Remarks

We have demonstrated that chemometric approaches applied

to 2D 13C–1H HSQC NMR spectra can reveal subtle differences

between sample types that are not obvious from simple inspec-

tion of the spectra. The added ability to interpret the loading

spectra as full-resolution 2D spectra provides a powerful new

tool to elucidate cell wall structural characteristics. This

method is valid for both the lignin and polysaccharide constit-

uents of the cell wall. Additional annotation of polysaccharide

peaks in these spectra remains to be performed and will fur-

ther increase the value of this approach. Although our exam-

ples come from secondary walls and wood, the technique

should function equally well for samples consisting of primary

cell walls. Both intra- and inter-class variation could be inter-

preted, yielding information about discrimination not only be-

tween samples, but also for biological and experimental

variation. In the future, we expect the 2D NMR profiles, via

these multivariate methods, to be amenable to the same types

of correlative analyses that have been used for different types

of 1D spectra (Christoffersson et al., 2002; Lestander et al.,

2009) to relate cell wall compositional/structural profiles to

other variables. Logical applications include predicting bio-

mass processing efficiency and for optimizing pretreatment

methods in various biorefinery processes.

METHODS

Plant Materials

TW and NW were collected from ;3-m high 15-year-old field-

grown aspen trees (Populus tremula) described in Hellgren

et al. (2004). TW was induced by fixing the trees at an angle

of ;30� with a string at the beginning of the growing season

(early June). After the growing season (late August), stem

pieces were sampled from midpoint of the stem of bent

(TW) and upright (NW) trees, immediately frozen in liquid ni-

trogen, transported to the lab on dry ice, and stored at –70�.
Wood from the latest annual ring (excluding latewood) was

used for the analysis. Production and greenhouse culture of

transgenic hybrid aspen (Populus tremula x tremuloides) trees

down-regulated in pectin methylesterase has been described

Figure 4. Comparison between Transgenic Populus Down-
Regulated in Pectin Methyl Esterase Activity with Wild-Type Trees.

(A) The t1–t2 scores scatter plot from the OPLS-DA model comparing
2D 13C–1H HSQC spectra from wild-type and transgenic trees. One
orthogonal component was calculated in addition to the predictive
component and Q2 was 0.34.
(B) 2D loading spectra constructed from p1 in the model in Figure
4A showing the differences between the wild-type and the trans-
genic samples. Red peaks are increased, and blue peaks are de-
creased, in relative amounts in transgenic trees.
(C) Same loading plots as in (B) but with a cut-off value of 0.5 iden-
tifying peaks that are major discriminants between the samples.
Annotated peaks are those verified to be either increased or de-
creased in transgenic samples and the peaks marked with dotted
lines are also increased but their identity is as yet unknown.
Remaining red and blue peaks are mainly artifacts from subtle peak
shifts or variation in line width of peaks between spectra.
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earlier (Siedlecka et al., 2008) and the samples used here are

from the transgenic line 5 in that study. Trees were grown

to ;1.5 m, internodes collected from a defined internode at

the lower third of the stem, frozen in liquid nitrogen, and

stored at –70�.

Sample Preparation and Cell Wall Dissolution

Five samples were prepared for each type of poplar wood

investigated, namely tension wood, normal wood, transgenic,

and wild-type. Each sample corresponds to a single tree

(i.e. no pooling of samples). Removal of extractives (cell wall

isolation) from debarked and coarsely ground material was

performed by sequential extractions. Cell walls were extracted

with water (10 min in an ultrasonic bath), followed by centrifu-

gation (10 min, 4000 rpm) and supernatant removal, and then

similarly extracted using 80/20 methanol/water. The methanol/

water extraction was performed two additional times. All

samples were lyophilized subsequent to cell wall isolation.

Following lyophilization, approximately 400 mg of the

wood was ground in a 50-mL ZrO2 jar with 10 3 10 mm

ZrO2 ball bearings using a Retsch PM100 model planetary

ball-mill, for 1 h 50 min using 20-min milling intervals with

10-min breaks in between to avoid excessive heating of the

sample. To effect cell wall dissolution (Lu and Ralph, 2003),

DMSO (1.8 ml) and N-methylimidazole (NMI, 900 ll) were

added to 100 mg of each ball-milled wood sample. The sam-

ples were stirred on a shaking board for 24 h. Acetylation was

accomplished simply by adding acetic anhydride (450 ll) and

stirring for 1.5 h. The acetylation reaction was quenched by

pouring the acetylated cell wall solution into water

(600 ml), where the sample was left to precipitate for 3 h.

The samples were then centrifuged in a JA-14 rotor at

21 500 g for 10 min. The samples were washed twice follow-

ing centrifugation under the same conditions. All samples

were lyophilized in order to remove remaining solvents.

NMR Acquisition

Approximately 80 mg of prepared acetylated cell wall (Ac-CW)

material was dissolved in CDCl3 (600 ll) in a 5-mm NMR

tube prior to NMR acquisition. Adiabatic 13C-inversion and
13C-refocusing pulses were implemented in the pulse sequence

used in this study (Bruker pulse sequence hsqcetgpsisp.2)

(Kay et al., 1992; Kupče and Freeman, 2007; Kupče and Hiller,

2001). We strongly recommend the use of adiabatic pulses in

2D 13C–1H HSQC experiments because of the significant sensi-

tivity improvement and more coherent phase-behavior ob-

served, for instance, for the aromatic resonances. Adiabatic

pulses effectively remove off-resonance effects that result in

suppressed signal intensities and phase-errors for resonances

far from the transmitter frequency. They also remove much

of the variation associated with differences in the 1-bond cou-

pling constant, 1JC–H (Kupče and Freeman, 1997). The samples

were all analyzed with the same optimized acquisition param-

eters and in randomized order to minimize the effects of ex-

perimental variations. All spectra were acquired on a 600-MHz

Bruker DRX spectrometer (Bruker Biospin, Rheinstetten,

Germany), using a 5-mm TXI cryoprobe equipped with

z-gradients. Sine-shaped gradients were used for coherence

selection. Sweep widths of 9 and 140 ppm were used in the
1H and 13C dimensions, respectively. The duration of each

2D experiment was approximately 1 h as a result of using a

relaxation delay of 1 s and collecting 12 scans for each of

the 256 t1 increments. After zero filling and linear prediction,

the resulting data matrix size was 1024 3 512. The spectra

were processed using Topspin 1.3 (Bruker Biospin, Rheinstet-

ten, Germany). Gaussian window functions were applied in

both dimensions, with LB = –1 and GB = 0.001 in F1 and LB =

–0.1 and GB = 0.001 in F2. Baseline correction was per-

formed using a 3rd-order polynomial and all spectra were

manually phase corrected and calibrated (using the residual

CHCl3 peak at dH = 7.27 ppm and dC = 77.0 ppm as an

internal reference) before analysis.

Multivariate Analysis

Pre-treatment of all 2D 13C–1H HSQC spectra were performed

in MATLAB (Mathworks Inc.) using in-house scripts for data im-

port, alignment, selection, and exclusion of spectral regions

and visualization of loadings. Multivariate data analysis was

performed using SIMCA-P+ 11.0 (MKS-Umetrics, Umeå, www.

umetrics.com). The residual CHCl3 resonance was removed

from all spectra prior to analysis by setting all data points in

this region to zero. Residual resonances from NMI that were

present in some spectra from the transgenic plants were also

excluded in the same way. The spectral region to be analyzed

(whole region except the acetyl region or the aromatic region)

was unfolded into a row vector (as shown in Figure 2) that was

normalized to a constant sum in order to eliminate differences

in spectral intensities related to variations in sample amount.

Data points with intensity lower than a noise threshold (deter-

mined from a ‘noise region’ of the spectra) were excluded. The

effect of different scaling, mean centering (i.e. no scaling), par-

eto scaling, and scaling to unit variance (UV-scaling) was eval-

uated in both studies and the best models were found when

using mean centered data in the study of tension wood and

UV-scaling for the OPLS-DA in the study of transgenic Populus

samples. The resulting data matrix consisting of the spectral

data of each sample as a row vector was subsequently

imported in SIMCA-P+ 11.0 for multivariate analysis. The load-

ing vectors extracted from the models were transferred to

MATLAB and the loading values were placed in their original

position in a vector with length corresponding to the unfolded

original spectrum. Folding of this vector into a matrix with the

dimensions 512 3 1024 (as for the original spectra) resulted in

the 2D loading spectra. MATLAB scripts for pre-treatment of

2D NMR spectra and visualization of loading are available from

the authors upon request.

SUPPLEMENTARY DATA

Supplementary Data are available at Molecular Plant Online.
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